考试资讯

课程

咨询热线8:00-24:00 400-0999-680

首页 考试资讯考研英语 2020考研英语经济学人外刊:流行音乐的密码(上)

2020考研英语经济学人外刊:流行音乐的密码(上)

时间:2019-05-28 16:17:02 编辑:leichenchen

       考研英语阅读理解中的文章,很多来自一些外刊杂志方面的题材。接下来,北京文都考研网为扩宽2020考研学子的知识面,整理了考研英语经济学人外刊:流行音乐的密码(上),供考生参考。

2020考研英语经济学人外刊:流行音乐的密码(上)

The science of songs

歌曲的科学

What makes good music?

如何打造好音乐?

Composers and listeners disagree

作曲者与听众的想法大相径庭

Hit songs are big business, so there is an incentive for composers to try to tease out those ingredients that might increase their chances of success.

热门歌曲可是一笔大生意,因此作曲者自然有一种动力去弄清那些可增加他们成功机会的要素。

This, however, is hard.

当然,这并不容易。

Songs are complex mixtures of features.

歌曲是各种特征复杂的融合。

How to analyse them is not obvious and is made more difficult still by the fact that what is popular changes over time.

如何去分析这些特征并没有明确的方法,并且随着时间的推移,流行元素的变化使得分析更加困难。

But Natalia Komarova, a mathematician at the University of California, Irvine, thinks she has cracked the problem.

但是,来自加州大学尔湾分校的数学家纳塔利·科马洛娃认为她已经破解了这个难题。

As she writes in Royal Society Open Science this week,her computer analysis suggests that the songs currently preferred by consumers are danceable, party-like numbers.

正如她本周在《皇家学会开放科学》杂志上发表的文章中写道,她的计算机分析显示,现今受消费者青睐的歌曲是那些可随之起舞的,派对之类的音乐。

Unfortunately, those actually writing songs prefer something else.

不幸的是,写歌的人却倾向于其他的因素。

Dr Komarova and her colleagues collected information on music released in Britain between 1985 and 2015.

科马洛娃博士和她的同事们收集了英国1985年至2015年发行的音乐的信息。

They looked in public repositories of music “metadata” that are used by music lovers and are often tapped into by academics.

他们专注于分析那些在公众存储库被音乐爱好者使用且经常被学者利用的音乐“元数据”。

They compared what they found in these repositories with what had made it into the charts.

他们将这些存储库中发现的内容与音乐排行榜上的内容进行了比较。

Metadata are information about the nature of a song that can give listeners an idea of what that song is like before they hear it.

元数据是指关于歌曲性质的信息,这些信息能让听众在听歌前就能对一首歌有一个大致的了解。

The repositories presented Dr Komarova and her team with more than 500,000 songs that had been tagged by algorithms which had been trained to detect numerous musical features.

科马洛娃博士及其团队在存储库中得到了超过50万首被算法标记的歌曲,这些算法可以被用于检测大量的音乐特征。

The tags included a dozen binary variables (dark or bright timbre; can or cannot be danced to; vocal or instrumental; sung by a man or a woman; and so on).

这些标记包括一系列的二元变量( 音色暗沉或明亮,可以或者不可以随之起舞,声乐型或器乐型,男歌手或女歌手,等等)。

The team fed all of this information into a computer and compared the features of songs that had made it into the charts (roughly 4% of those in the repositories) with those of songs that had not.

该团队把这些信息都录入了电脑,并把上榜歌曲与没有上榜歌曲的特征进行了对比(上榜歌曲仅占存储库的约4%)。

 

[重难点词汇]

incentive [ɪn'sɛntɪv] n. 动机;刺激 adj. 激励的;刺激的

ingredient [ɪn'ɡridɪənt] n. 原料;要素;组成部分 adj. 构成组成部分的

academic [,ækə'dɛmɪk] adj. 学术的;理论的;学院的 n. 大学生,大学教师;学者

algorithm ['ælgə'rɪðəm] n. 算法,运算法则

       以上是北京文都考研网给出的“2020考研英语经济学人外刊:流行音乐的密码(上)”,希望对备考2020考研英语的考生有所帮助!祝2020考研顺利!

推荐阅读:

2020考研英语经济学人外刊精选总结

2020考研英语同源外刊文章汇总

2020考研英语历年真题长难句150题汇总

我要提分

    • 2020考研鹰飞体验营

    研友互动

    关注北京文都微信

    关注文都考研微博