考研英语外刊阅读能力的提升,需要日积月累才能看得到效果。接下来,北京文都考研网为帮助2020考研学子,在英语水平上更上一层台阶,特意整理出考研英语外刊阅读精选:太空智能技术,供考生参考。
2020考研英语外刊阅读精选:太空智能技术
Speeding up the processing of space images
加快空间图像处理
Much of the information that is beamed back from space is useless.
从太空传回来的许多信息是没用的。
Pictures taken by satellites orbiting the Earth might take days to download, only to show lots of cloud obscuring the area of interest.
由绕地球运行的卫星拍摄的照片可能需要好几天才能下载下来,下载下来的图片只能显示大量遮盖住兴趣区的云层。
The subject matter may also be surrounded by irrelevant information. All this uses up a lot of valuable bandwidth. Processing data in space, before transmission, would reduce clutter, but this can be tricky.
主体可能也被不相关信息所围绕。所有这些都消耗了大量宝贵的带宽。在传输之前,在太空中处理数据可以减少杂波,但这可能会很棘手。
Cosmic rays randomly flip the ones and zeroes that computers operate on, introducing unpredictable errors.
宇宙线随机翻转电脑操作的1和0,带来不可预测的错误。
High levels of radiation can also damage electronic circuits. KP Labs, based in Gliwice, Poland, is building a satellite to overcome some of these problems. Their device, called Intuition-1, is controlled by a neural network, a form of artificial intelligence modelled on the human brain.
高能级辐射也可能会破坏电子电路。位于波兰格利维策的KP实验室正在建造一个克服其中一些问题的卫星。他们的设备被称为Intuition-1,由一个神经网络进行控制,这是一种以人脑为模型的人工智能。
The satellite is what is known in the trade as a 6U CubeSat, which means it is composed of six standard-sized 10x10x11.5cm modules. Intuition-1 will be equipped with a hyperspectral imager, which takes 150 pictures of every scene it looks at.
这颗卫星在业内被称为6U CubeSat,这意味着它由6个标准尺寸的10x10x11.5厘米模块组成。将装配一个超光谱成像仪,它会为每个看到的场景拍摄150张照片。
Each picture is at a different spectral frequency, so contains different information. The neural network stitches these together using powerful graphics chips hardened against radiation. The developers have also built error correction into their software.
每张图片的光谱频率不同,所以包含信息也不同。神经网络利用强大的抗辐射图形芯片将这些数据拼接在一起。开发人员还在他们的软件中内置了纠错功能。
Intuition-1 will view a 15km-wide swathe of Earth at a resolution of 25 metres per pixel. This will be able to reveal details such as how well crops are growing or allow the number of trees in a forest to be counted.
将以每像素25米的分辨率观测15公里宽的地球带。这将能够揭示一些细节,比如农作物生长得如何或者可以计算森林中树木的数量。
But instead of transmitting back every last bit of image data, the satellite will summarise what the user requests as useful information.
但这个卫星不会将图片数据的每一帧都传回来,它将把用户要求的信息总结成有用的信息。
This might, for instance, be a heat-map showing areas of weeds in a field or the location of a forest fire. Reducing the data load means that some of this information can be transmitted live.
例如,这可能是一份热图,显示出了田野中杂草丛生的区域或森林火灾的位置。 减少数据加载意味着可以现场传输其中一些信息。
The satellite will be used to prove that a hardened neural network can survive in space. This could pave the way for other space applications.
该卫星将被用于证实经过强化的神经网络可以在太空中生存。这可能为其他空间应用铺平道路。
For example, the Curiosity rover on Mars was successfully upgraded in 2016 with a set of algorithms to detect "interesting" rocks for investigation, instead of picking them randomly.
例如,2006年,火星上的好奇号火星探测车成功升级,升级后的探测车配有一套算法,可以探测到用于调查的“有趣”岩石,而非随机挑选。
A neural network could provide future rovers and deep-space probes with a better ability to make decisions. The neural network and hyperspectral imager have already been built and tested by KP Labs.
神经网络可为未来探测车以及深空探测器提供更好的决策能力。KP实验室已经建造并测试了神经网络和超光谱成像仪。
The kit will go into a satellite body being constructed by Clyde Space,a satellite producer based in Scotland, and launched in 2022. After that there will be more intelligence in space.
该设备将进入由克莱德航天公司建造的卫星体内 (这是一家位于苏格兰的卫星生产公司)并于2022年发射。发射后,太空中将会有更多的智能。
以上是北京文都考研网给出的“2020考研英语外刊阅读精选:太空智能技术”,希望对2020考研者有所帮助!祝2020考研成功!
推荐阅读: